

Insights into Hägg Iron-Carbide-Catalyzed Fischer–Tropsch Synthesis: Suppression of CH₄ Formation and Enhancement of C–C Coupling on χ -Fe₅C₂ (510)

Thanh Hai Pham,[†] Yanying Qi,[‡] Jia Yang,[§] Xuezhi Duan,^{*,†} Gang Qian,[†] Xinggui Zhou,[†] De Chen,[‡] and Weikang Yuan[†]

[†]State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China

[‡]Department of Chemical Engineering, Norwegian University of Science and Technology, N-7491 Trondheim, Norway [§]SINTEF Materials and Chemistry, N-7463 Trondheim, Norway

Supporting Information

ABSTRACT: Probing the product selectivity of Fischer–Tropsch catalysts is of prime scientific and industrial importance—with the aim to upgrade products and meet various end-use applications. In this work, the mechanisms for CH₄ formation and C_1-C_1 coupling on a thermodynamically stable, terraced-like χ -Fe₅ C_2 (510) surface were studied by DFT calculations. It was found that this surface exhibits high effective barriers of CH₄ formation for the three cases (i.e., 3.66, 2.81, and 2.39 eV), indicating the unfavorable occurrence of CH₄ formation under FTS conditions. The C + CH and CH + CH are the most likely coupling pathways, which follow the carbide mechanism. Subsequently, the effective barrier difference between CH₄ formation and C₁–C₁ coupling was used as a descriptor to quantify FTS selectivity. A comparison of the selectivity between this surface and the reported FTS catalysts'

surfaces was discussed in detail. More interestingly, this surface shows unexpectedly high C_{2+} selectivity. This indicates that manipulating the crystal facet of χ -Fe₅ C_2 catalyst can effectively tune the FTS selectivity, which will open a new avenue for highly selective Fe-based FTS catalysts.

KEYWORDS: χ -Fe₅ C_2 catalyst, Fischer–Tropsch synthesis selectivity, CH₄ formation, C–C coupling, carbide mechanism

1. INTRODUCTION

Conversion of coal-, biomass-, or natural gas-derived syngas via Fischer–Tropsch synthesis (FTS) has recently gained a renewed interest as a nonpetroleum, promising alternative route to produce clean fuels and value-added chemicals (e.g., lower olefins).¹⁻⁶ Selectivity is one of the most important issues in an intricate FTS network including many surface intermediates and elementary steps.^{7–11} Taking into account that methane is the least desired product,¹² mechanistic studies on how to reduce its selectivity or even suppress its formation are highly encouraged for designing and optimizing FTS catalysts.

FTS selectivity highly depends on the reaction conditions and the catalyst types, and commercial FTS catalysts are based on Fe or Co with the low cost and high selectivity of hydrocarbons.^{1–12} Fe catalysts are more attractive in two aspects compared to Co catalysts:^{13,14} (i) converting CO-rich and contaminant-containing syngas from coal or biomass feedstock because of the higher activity of water–gas shift and resistance to contaminants; (ii) catalyzing high-temperature FTS owing to the lower methanation activity and higher catalytic efficiency. Up to now, many efforts, including selecting supports, adjusting pretreatment conditions, optimizing catalyst particle sizes, and adding promoters, have been made to lower CH₄ selectivity and raise C₂₊ selectivity of Fe-based catalysts.^{4,5,7,10,13} Furthermore, some experimental and theoretical evidence has prompted researchers to use iron carbides, especially Hägg iron carbide (χ -Fe₅C₂), as the active phases among various iron species from the complex phase transformation of working Fe FTS catalysts.^{15–19} Recently, Hu and co-workers have used the effective barrier difference between CH₄ formation and C₁–C₁ coupling ($\Delta E_{\rm eff}$ the derivation details in <u>Supporting Information</u>), proposed in their pioneering work,²⁰ as a descriptor to analyze FTS selectivity on the Feterminated χ -Fe₅C₂ (100) surface.¹⁷

It is worth mentioning that unlike metallic surfaces, some high Miller index surfaces of χ -Fe₅C₂ especially (510), detected by XRD and HRTEM,^{19,21,22} exhibit lower surface energies and thus have the larger percentages among the exposed crystal facets.²³ Recently, DFT calculations of CO activation on χ -Fe₅C₂ (monoclinic crystal structure and "a" being the highest among the lattice parameters) surfaces showed that the

```
Received:October 28, 2014Revised:February 17, 2015Published:February 25, 2015
```

terraced-like (510) surface prefers the direct CO dissociation route,²³ whereas the stepped-like (010) and (001) surfaces prefer the H-assisted CO dissociation route,^{16,24} and the stepped-like (100) surface prefers both direct and H-assisted CO dissociation routes.²⁵ Additionally, the (510) surface is suggested as the active facet of FTS because the direct CO dissociation route generally corresponds to high FTS activity.^{23,26} Therefore, as a consecutive effort, probing FTS selectivity on the (510) surface is highly desirable.

The purpose of this study is to investigate FTS selectivity on a thermodynamically stable, terraced-like χ -Fe₅C₂ (510) surface by periodic spin-polarized DFT calculations. All possible reaction pathways including carbide and CO insertion mechanisms for CH₄ formation and C₁-C₁ coupling were considered and analyzed with the objective to identify the active sites and reaction mechanisms. Subsequently, the effective barrier difference between CH₄ formation and C₁-C₁ coupling (ΔE_{eff}) was employed as a descriptor to evaluate the FTS selectivity. Finally, the selectivity between the χ -Fe₅C₂ (510) surface and the reported FTS catalysts surfaces was compared and discussed in detail, and then some insights were proposed. This might guide the design of highly selective Fe-based FTS catalysts with the suppression of CH₄ formation and enhancement of C-C coupling.

2. COMPUTATIONAL DETAILS

2.1. Methods. All of the periodic spin-polarized DFT calculations were performed using the Vienna ab initio simulation package (VASP).^{27–30} The interactions between ion cores and valence electrons were described by the projector augmented wave (PAW) method,³¹ and the exchangecorrelation functional was GGA-PBE.^{32,33} The solution of the Kohn-Sham equations was expanded in a plane wave basis set with a cutoff energy of 400 eV. The Brillouin zone sampling was performed using a Monkhorst–Pack grid,³⁴ and electronic occupancies were determined in light of a Methfessel-Paxton scheme with an energy smearing of 0.2 eV.35 The Dimer method³⁶ was used to determine the transition states of the elementary steps of CH₄ formation and C-C coupling reactions. In all the calculations, a force-based conjugatedgradient method was used to optimize the geometries.³⁷ Saddle points and minima were considered to be converged when the maximum force in each degree of freedom was less than 0.03 eV/Å. Furthermore, the vibrational frequencies were analyzed to evaluate if a stationary point is a minimum state with no imaginary frequencies or a transition state with only one imaginary frequency, and zero-point energy (ZPE) was considered for all the calculated energy data.

2.2. χ -Fe₅C₂ (510) Surface Models. Surface reactions were calculated on $p(1 \times 1)$ supercell slab with four-layered iron and eight-layered carbon. The Monkhorst–Pack mesh of $4 \times 2 \times 1$ k-point sampling in the surface Brillouin zone was used. The bottom two-layered iron and four-layered carbon were fixed, whereas the top two-layered iron, four-layered carbon, and adsorbates were relaxed. The vacuum spacing between slabs was around 10 Å. The top and side views of the studied χ -Fe₅C₂ (510) surface were illustrated in Figure 1. Moreover, <u>Table S1 and Table S2</u> summarize the influences of the vacuum thickness and supercell size for the C + CH \rightarrow CCH and CH₂ + CH₃ \rightarrow CH₂CH₃ reactions, respectively. This could validate the applicability of our model.

Figure 1. Top (left) and side (right) views of χ -Fe₅C₂ (510) surface (Blue: Fe atoms; gray: C atoms). Dashed box shows the unit cell of $p(1 \times 1)$.

3. RESULTS AND DISCUSSION

3.1. CH₄ Formation Mechanism. When exposing Hägg iron carbide to syngas, two kinds of mechanisms for CH₄ formation primarily occur by means of (i) stepwise hydrogenation of the surface C atom and (ii) direct or H-assisted dissociation of the adsorbed CO and subsequent stepwise hydrogenation. Our previous studies show that on terraced-like χ -Fe₅C₂ (510) surface, direct CO dissociation is the preferred activation pathway.²³ Therefore, there are three possibilities for CH₄ formation: **Case 1**, stepwise hydrogenation of the surface C atom on the clean surface; **Case 2**, stepwise hydrogenation of the surface **3**, stepwise hydrogenation of the dissociated C atom on the disso

Let us first consider CH_4 formation mechanism of **Case 1**, because of the surface C atom occupied site previously suggested as the active sites for CH_4 formation.¹⁶ The optimized structures of the chemisorbed C₁ species and transition states (TSs) of elementary steps are shown in Figure S1 and Figure 2, respectively. As we can see, the most stable adsorption sites for C, CH, and CH₂ are the 4-fold site, although the bridge site is favored by CH₃; at the TSs, C, CH, and CH₂ adsorbs at the 4-fold site, and CH₂ adsorbs at the 4-fold site, and CH₂ adsorbs at the 4-fold site, and CH₃ adsorbs at the top site. The geometries are very similar to those on the Fe (100) surface.^{38,39}

Figure 3 illustrates the energy profile of CH₄ formation in **Case 1**. It is clearly seen that the total energy of the TSs increases along the hydrogenation coordinate (i.e., the last step has the highest TS energy). Moreover, CH₃ compared to C, CH, and CH₂ species is not thermodynamically stable and thus has low site coverage. It can be concluded that CH₃ hydrogenation is the slowest. This would suggest that this step is the rate-determining step of CH₄ formation and the preceding hydrogenation steps reach quasi-equilibrium. Therefore, the effective barrier of CH₄ formation ($E_{\rm eff,CH4}$, the derivation details in <u>Supporting Information</u>^{17,20,40,41}) was used as a descriptor to evaluate the reaction rate of CH₄ formation. Unexpectedly, the $E_{\rm eff,CH4}$ of **Case 1** is up to 3.66 eV, indicating that the CH₄ formation is very difficult to occur under FTS conditions.

The CH_4 formation mechanisms of **Case 2** and **Case 3** were further studied. The chemisorption of C_1 species and the TSs of elementary steps were calculated, and the corresponding energy

Figure 2. Structures of the TSs of elementary steps involved in the methanation reactions in the three cases. Blue: Fe atoms; gray: C atoms; green: C atoms involved in reactions; white: H atoms; yellow: H atoms involved in reactions.

Figure 3. Energy profiles of CH_4 formation in the three cases. The corresponding effective barriers were also presented.

profiles were plotted. It can be clearly seen that these two cases are very similar to **Case 1** regardless of the optimized structures of chemisorbed C₁ species (<u>Figure S1</u>) and TSs (Figure 2) or the nature of stepwise-increasing energy profiles (Figure 3). However, the chemisorption energies of H and C₁ species in these two cases are different from those in **Case 1** (<u>Table S3</u>). Moreover, the C–H distances (d_{C-H}) at the TSs and the calculated reaction barriers of the elementary steps in the three cases are given in Table 1. It is apparently observed that d_{C-H} of the latter three elementary steps follows the order of **Case 1** < **Case 2** < **Case 3**, while E_a of each elementary step follows the trend of **Case 1** > **Case 2** > **Case 3**.

It can be also seen in Figure 3 that the effective barriers of CH₄ formation in Case 2 and Case 3 are 2.81 and 2.39 eV, respectively. They are lower than the $E_{\text{eff,CH4}}$ in Case 1 (i.e., 3.66 eV). Considering the similar geometric structures in the three cases, the difference in $E_{\rm eff,CH4}$ is most likely due to the difference in the electronic properties of surface Fe atoms. As shown in Figure S2, the average d-band centers (ε_d) of surface Fe atoms in the three cases follow the order of Case 1 > Case 2 > Case 3. It is reported that the site with d-band center far from the Fermi energy is more active for hydrogenation.¹⁶ This would provide a rational interpretation for the Case 3 with the lowest barrier. Furthermore, Figure S3 exhibits a linear relationship between $E_{\text{eff.CH4}}$ and $\overline{\epsilon_d}$ in the three cases. This demonstrates that the difference in $E_{\rm eff,CH4}$ in the three cases is mainly ascribed to the difference in the electronic properties of surface Fe atoms. This is consistent with previous results (i.e., a linear relationship between the effective barrier of CH₄ formation on different iron carbides and the d-band center of surface Fe atom).¹⁶

On the basis of the above results, **Case 3** is found to have the lowest effective barrier of CH₄ formation. However, it is much higher than that of the stepped-like χ -Fe₅C₂ (010) surface (1.54 eV),¹⁶ where the similar computational methods were employed. This suggests that on the one hand, the terraced-like χ -Fe₅C₂ (510) surface is less active toward CH₄ formation; on the other hand, CH₄ formation is highly sensitive to χ -Fe₅C₂ crystal facet.

3.2. C₁-C₁ Coupling Mechanism. To probe FTS selectivity on χ -Fe₅C₂ (510) surface, C₁-C₁ coupling reactions were further studied. As shown in Table 2, 10 kinds of C_1-C_1 coupling reactions between CH_i (i = 0-3) derived from the surface C and CH_i (i = 0-3) from the dissociated C in terms of the carbide mechanism were first considered. The optimized structures of TSs are listed in Figure S4. At the TSs, the most stable adsorption sites of C and CH, CH₂ as well as CH₃ are 4fold site, 3-fold or bridge site and top site, respectively, which are very similar to those on Fe (100) surface.^{42,43} Moreover, the C-C distances at the TSs and the reaction barriers and reaction energies of CH_i + CH_i are also summarized in Table 2. Subsequently, the effective barrier of $CH_i + CH_i$ reactions $(E_{\rm eff,CH_rCH_2}$ the derivation details in Supporting Information^{17,20,40,41}) was used as a descriptor to evaluate the reaction rate of $C_1 - C_1$ coupling. It can be seen in Table 2 that the C + C coupling reaction among the $CH_i + CH_i$ ones has the largest reaction barrier, and the resultant C-C product is very unstable. More interestingly, the C + CH and CH + CH coupling reactions have relatively lower individual reaction barrier and effective barrier than other C_1-C_1 coupling

Table 1. C–H Distances (d_{C-H}) at the TSs and Reaction Barriers (E_a) of Elementary Steps Involved in CH₄ Formation in the Three Cases^{*a*}

	$d_{\rm C-H}$ (Å)			$E_{\rm a}~({\rm eV})$		
reactions	Case 1	Case 2	Case 3	Case 1	Case 2	Case 3
$C + H \rightarrow CH$	1.456	1.444	1.550	0.97 (1.01)	0.95 (0.99)	0.86 (0.93)
$CH + H \rightarrow CH_2$	1.393	1.412	1.437	0.94 (0.95)	0.86 (0.87)	0.84 (0.87)
$CH_2 + H \rightarrow CH_3$	1.448	1.550	1.670	1.05 (1.05)	0.81 (0.78)	0.80 (0.79)
$CH_3 + H \rightarrow CH_4$	1.436	1.540	1.551	1.14 (1.15)	0.92 (0.93)	0.88 (0.84)

^aValues excluding ZPE in parentheses.

reactions	$d_{\rm C-C}$ (Å)	$E_{\rm a}~({\rm eV})$	$\Delta E_{ m r}~({ m eV})$	$E_{\rm eff,CH_i-CH_j/CO}$ (eV)
C + C	1.601	1.55 (1.59)	1.24 (1.23)	1.55 (1.59)
C + CH	1.778	1.07 (1.09)	0.67 (0.65)	1.66 (1.61)
$C + CH_2$	1.911	1.08 (1.09)	0.24 (0.15)	2.58 (2.46)
$C + CH_3$	2.036	1.23 (1.21)	0.02 (-0.07)	3.07 (2.81)
CH + CH	1.718	0.96 (0.96)	0.51 (0.43)	1.79 (1.66)
$CH + CH_2$	1.850	1.03 (1.03)	0.69 (0.64)	2.77 (2.57)
$CH + CH_3$	2.000	1.44 (1.52)	0.50 (0.42)	3.57 (3.30)
$CH_2 + CH_2$	1.979	1.04 (0.98)	0.00 (-0.02)	3.66 (3.38)
$CH_2 + CH_3$	1.973	1.49 (1.45)	0.40 (0.23)	4.11 (3.85)
$CH_3 + CH_3$	-	-	0.58 (0.38)	-
C + CO	1.696	1.66 (1.72)	1.20 (1.24)	1.66 (1.72)
CH + CO	1.772	1.13 (1.13)	0.97 (0.93)	1.72 (1.65)
$CH_2 + CO$	1.864	1.16 (1.14)	0.36 (022)	2.66 (2.51)
$CH_3 + CO$	1.956	1.35 (1.33)	0.30 (0.27)	3.24 (2.93)
^a Values excluding ZPE in pa	arentheses.			

Table 2. C–C Distances (d_{C-C}) at the TSs and Reaction Barriers (E_a) , Reaction Energies (ΔE_r) , and Effective Barriers $(E_{eff,CHi-CHi/CO})$ of C_1-C_1 Coupling Reactions^{*a*}

reactions, which would be most likely to occur on the χ -Fe₅C₂ (510) surface under typical FTS conditions.

Aside from the carbide mechanism, the CO rather than less unstable HCO or COH^{23} insertion mechanism for C_1-C_1 coupling reactions was also considered. The derivation details of the effective barrier of $CH_i + CO(E_{eff,CH,-CO})$ are shown in Supporting Information. The corresponding structural and energy results are also given in Figure S4 and Table 2. It can be seen that the C + CO coupling reaction has the largest reaction barrier, and the CH + CO coupling reaction has relatively lower individual reaction barrier and effective barrier than CH₂ +CO and CH₃ + CO coupling reactions. Moreover, the CH + CO coupling reaction has similar individual reaction barrier and effective barrier compared to the C + CH and CH + CH coupling reactions, which might also occur on the χ -Fe₅C₂ (510) surface. Along this line, the CH + CO \rightarrow CCH + O reaction pathways in light of carbide or CO insertion mechanism were further studied. As shown in Figure 4, the overall barrier of the CO insertion pathway is 1.56 eV, which is 0.47 eV higher than that of the carbide pathway. This indicates that the carbide mechanism is the dominating C_1-C_1 coupling reaction mechanism on the χ -Fe₅C₂ (510) surface. Moreover, previous study showed that CO insertion mechanism is the

Figure 4. Energies and structures for the CH + CO \rightarrow CCH + O formation pathways on χ -Fe₅C₂ (510) surface in terms of the carbide mechanism (red-solid line) and CO-insertion mechanism (blue-dash line). Zero-point energies are included. Blue: Fe atoms; gray: C atoms; green: C atoms involved in reactions; white: H atoms; red: O atoms.

favorable C_1-C_1 coupling mechanism on χ -Fe₅C₂ (001) surface.²⁴ This indicates that C_1-C_1 coupling mechanism is highly sensitive to χ -Fe₅C₂ crystal facet.

The above results show that the C_1-C_1 coupling reactions on the terraced-like χ -Fe₅C₂ (510) surface mainly proceed by the C + CH and CH + CH in terms of the carbide mechanism. This is in good agreement with the steady-state isotopic transient kinetic analysis (SSITKA) results of Govender et al., i.e., both C and CH as active C1 species participating in chain initiation to form reactive C2 species such as CCH during hightemperature FTS on the Fe-based catalyst.^{44,45} Moreover, the C_1-C_1 coupling reactions on the terraced-like χ -Fe₅ C_2 (510) surface were compared to those on the stepped-like χ -Fe₅C₂ (100) surface¹⁷ for understanding the relationship between the favorable coupling reaction and the χ -Fe₅C₂ crystal facet, although different computational methods were employed. As shown in Figure 5, on the terraced-like surface, the coupling reaction involving relatively stable species has a lower effective barrier, and the C + CH and CH + CH are the preferred C_1 -

Figure 5. Effective barriers $(E_{\text{eff},C-C})$ and reaction barriers (E_a) of C_1 – C_1 coupling reactions and the involving reactants energies $(E_i + E_j)$ on χ -Fe₅C₂ (510) and χ -Fe₅C₂ (100) surfaces. The data of χ -Fe₅C₂ (100) surface are from ref 17.

C₁ coupling pathways. However, on the stepped-like surface, the $C + CH_i$ coupling reaction involving relatively unstable species (e.g., $C + CH_3$) has a lower effective barrier; other C_1 - C_1 coupling reactions except $CH_2 + CH_3$ have similar effective barriers, and the C + CH₂ is the preferred C_1-C_1 coupling pathways. In addition, the reaction barrier on the terraced-like surface is insensitive to the stability of reactants though the C_1 -C1 coupling reactions involving unstable CH3 species have a slightly higher barrier. In contrast, the reaction barrier on the stepped-like surface is highly sensitive to the stability of reactants: the higher reaction barrier apparently arises from the more stable reactants. This would provide an interpretation for a different trend of the effective barriers and thus the preferred $C_1 - C_1$ coupling reactions between the two surfaces. It is noted to mention that C and CH species prefer to adsorb at 4-fold sites of metal surfaces;^{26,39} for the TSs structures, C and CH species adsorb at the 4-fold hollow site on χ -Fe₅C₂ (510) surface (Figure S4); however, C species adsorb at the 3-fold site, and \overline{CH} species adsorb at 2-fold or 3-fold sites on the χ - Fe_5C_2 (100) surface.¹⁷ It could be deduced that the difference in the active sites' structures on the two surfaces mainly contributes to the difference in the favorable C_1-C_1 coupling pathways.

3.3. Selectivity between CH₄ and C₂₊. To quantify the selectivity between CH₄ and C₂₊, the effective barrier difference between CH₄ formation and C₁-C₁ coupling (ΔE_{eff} the derivation details in <u>Supporting Information</u>^{17,20}) was used a descriptor. In principle, the higher ΔE_{eff} represents the higher selectivity of C₂₊ and the lower selectivity of CH₄. Table 3 gives

Table 3. Effective Barriers of CH_4 Formation and C_1-C_1 Coupling and Their Barrier Differences on Rh, Ru, Co, Fe, and Their Carbide Surfaces

surface	$E_{\rm eff,CH4}~({\rm eV})$	$E_{\rm eff,C1-C1}$ (eV)	$\Delta E_{\rm eff}~({\rm eV})$	ref
stepped Co ₂ C (001)	1.27	2.59	-1.32	17
Rh (211)	1.23	1.68	-0.45	20
stepped Co (0001)	1.31	1.55	-0.24	17
Fe (210)	2.13	2.19	-0.06	20
χ -Fe ₅ C ₂ (100)	1.89	1.94	-0.05	17
stepped Ru (0001)	1.44	1.34	0.10	20
Fe (100)	2.13	1.92	0.21	39, 43
χ -Fe ₅ C ₂ (510)	2.39	1.66	0.73	this work

a comparison of $\Delta E_{\rm eff}$ between the χ -Fe₅C₂ (510) surface and the reported FTS catalysts surfaces taken from the literature.^{17,20,39,43} Although different computational methods were employed between our work and those reported in the literature, the comparison of the $\Delta E_{\rm eff}$ values, not the absolute $E_{\rm eff,CH4}$ and $E_{\rm eff,C1-C1}$ values, is still reasonable to understand the trend of FTS selectivity. Obviously, the χ -Fe₅C₂ (510) surface exhibits the highest $\Delta E_{\rm eff}$ and thus the lowest selectivity of CH₄ as well as the highest selectivity of C₂₊.

Considering that the real χ -Fe₅C₂ catalyst consists of different crystal facets, probing the FTS mechanism on different χ -Fe₅C₂ crystal facets is informative and would provide a catalyst design principle for the upgrade of FTS products with various end-use applications (e.g., transportation fuels and lower olefins). It is demonstrated that the terraced-like (510) surface prefers the direct CO dissociation²³ and the occurrence of C–C coupling reactions in terms of the carbide mechanism. However, the stepped-like (010), (001) surfaces prefer the H-

assisted CO dissociation,^{16,24} and the (100) surface prefers both direct and H-assisted CO dissociation;²⁵ both exhibit different FTS behaviors.^{16,17,25,46} Moreover, the CH₄ formation effective barrier of the (010) surface¹⁶ is 1.54 eV, which is much lower than that of the (510) surface (i.e., 2.39 eV). This suggests that the step sites of γ -Fe₅C₂ catalyst are more active toward CH₄ formation, which is consistent with the experimental results of de Jong and co-workers.⁴⁷ All of these results revealed that manipulating the crystal facets of χ -Fe₅C₂ catalyst could be an effective method to tune FTS selectivity, which would shed new light on preparing highly selective χ - Fe_5C_2 FTS catalyst by the well-defined preparation method. However, it is worth mentioning that there is still plenty of room for understanding the FTS mechanism on the χ -Fe₅C₂ catalyst, owing to wide product distribution (e.g., paraffins, olefins, and oxygenates present in minor amounts)¹⁹ and thus involving various surface intermediates and elementary steps. Up to now, a direct relationship between the χ -Fe₅C₂ crystal facet and FTS selectivity is still unclear, and we will investigate this relationship in our future work.

CONCLUSIONS

In summary, we theoretically identify that for FTS on a thermodynamically stable, terraced-like χ -Fe₅C₂ (510) surface, the surface C-occupied site is inactive toward CH₄ formation; all the three cases exhibit high effective barriers of CH₄ formation (i.e., 3.66, 2.81, and 2.39 eV), indicating the unfavorable occurrence of CH4 formation under the FTS condition. The C + CH and CH + CH are the most likely coupling pathways in terms of the carbide mechanism. CH₄ formation and C₁-C₁ coupling mechanisms are highly sensitive to the χ -Fe₅C₂ crystal facet. Moreover, FTS selectivity between this surface and the reported FTS catalysts' surfaces are compared and discussed in detail. This surface shows unexpectedly high C2+ selectivity. This strongly indicates that manipulating the crystal facets of the χ -Fe₅C₂ catalyst would effectively tune FTS selectivity. The insights revealed here will guide the design and optimization of highly selective χ -Fe₅C₂ FTS catalysts.

ASSOCIATED CONTENT

S Supporting Information

The following file is available free of charge on the ACS Publications website at DOI: 10.1021/cs501668g.

Derivations of effective barriers of CH_4 formation and C_1-C_1 coupling and their barrier difference, Tables S1–S3 and Figures S1–S4 (<u>PDF</u>)

AUTHOR INFORMATION

Corresponding Author

*E-mail: xzduan@ecust.edu.cn. Fax: +86-21-64253528.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work is financially supported by the Natural Science Foundation of China (21306046) and the 111 Project of Ministry of Education of China (B08021).

REFERENCES

(1) Khodakov, A. Y.; Chu, W.; Fongarland, P. Chem. Rev. 2007, 107, 1692–1744.

- (2) Tijmensen, M. J. A.; Faaij, A. P. C.; Hamelinck, C. N.; van Hardeveld, M. R. M. Biomass Bioenerg. 2002, 23, 129–152.
- (3) de Klerk, A. Energy Environ. Sci. 2011, 4, 1177-1205.
- (4) Abello, S.; Montane, D. ChemSusChem 2011, 4, 1538-1556.
- (5) Torres Galvis, H. M.; de Jong, K. P. ACS Catal. 2013, 3, 2130-2149.
- (6) Liu, Y. F.; Ersen, O.; Meny, C.; Luck, F.; Pham-Huu, C. ChemSusChem 2014, 7, 1218-1239.
- (7) van der Laan, G. P.; Beenackers, A. A. C. M. Catal. Rev. Sci. Eng. 1999, 41, 255-318.
- (8) Iglesia, E. Appl. Catal., A 1997, 161, 59-78.
- (9) Dry, M. E. Catal. Today 2002, 71, 227-241.
- (10) Schulz, H. Appl. Catal., A 1999, 186, 3-12.
- (11) Biloen, P.; Sachtler, W. M. H. Adv. Catal. 1981, 30, 165-216.
- (12) Yang, J.; Ma, W. P.; Chen, D.; Holmen, A.; Davis, B. H. Appl. Catal., A 2014, 470, 250-260.
- (13) Torres Galvis, H. M.; Koeken, A. C. J.; Bitter, J. H.; Davidian, T.; Ruitenbeek, M.; Dugulan, A. I.; de Jong, K. P. *J. Catal.* **2013**, *303*, 22–30.
- (14) Steynberg, A.; Dry, M. E. In Stud. Surf. Sci. Catal.; Elsevier: Amsterdam, 2004; Vol. 152, p 196.
- (15) Herranz, T.; Rojas, S.; Perez-Alonso, F. J.; Ojeda, M.; Terreros, P.; Fierro, J. L. G. J. Catal. 2006, 243, 199–211.
- (16) Huo, C. F.; Li, Y. W.; Wang, J. G.; Jiao, H. J. J. Am. Chem. Soc. 2009, 131, 14713-14721.
- (17) Cheng, J.; Hu, P.; Ellis, P.; French, S.; Kelly, G.; Lok, C. M. J. Phys. Chem. C 2010, 114, 1085–1093.
- (18) de Smit, E.; Cinquini, F.; Beale, A. M.; Safonova, O. V.; van Beek, W.; Sautet, P.; Weckhuysen, B. M. J. Am. Chem. Soc. **2010**, 132, 14928–14941.
- (19) Yang, C.; Zhao, H. B.; Hou, Y. L.; Ma, D. J. Am. Chem. Soc. 2012, 134, 15814-15821.
- (20) Cheng, J.; Hu, P.; Ellis, P.; French, S.; Kelly, G.; Lok, C. M. J. Phys. Chem. C 2009, 113, 8858-8863.
- (21) Retief, J. J. Powder Diffr. 1999, 14, 130-132.
- (22) Huang, G. M.; Hu, J.; Zhang, H.; Zhou, Z. J.; Chi, X. Q.; Gao, J. H. *Nanoscale* **2014**, *6*, 726–730.
- (23) Pham, T. H.; Duan, X. Z.; Qian, G.; Zhou, X. G.; Chen, D. J. Phys. Chem. C 2014, 118, 10170–10176.
- (24) Cao, D. B.; Li, Y. W.; Wang, J. G.; Jiao, H. J. J. Mol. Catal. A: Chem. 2011, 346, 55–69.
- (25) Ozbek, M. O.; Niemantsverdriet, J. W. J. Catal. 2014, 317, 158–166.
- (26) Liu, J. X.; Su, H. Y.; Sun, D. P.; Zhang, B. Y.; Li, W. X. J. Am. Chem. Soc. 2013, 135, 16284–16287.
- (27) Kresse, G.; Hafner, J. Phys. Rev. B 1993, 47, 558-561.
- (28) Kresse, G.; Hafner, J. Phys. Rev. B 1994, 49, 14251-14269.
- (29) Kresse, G.; Furthmuller, J. Comput. Mater. Sci. 1996, 6, 15-50.
- (30) Kresse, G.; Furthmuller, J. Phys. Rev. B 1996, 54, 11169-11186.
- (31) Blochl, P. E. Phys. Rev. B 1994, 50, 17953-17979.
- (32) Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758-1775.
- (33) Perdew, J. P.; Burkem, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865–3868.
- (34) Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188-5192.
- (35) Methfessel, M.; Paxton, A. T. Phys. Rev. B 1989, 40, 3616-3621.
- (36) Henkelman, G.; Jonsson, H. J. Chem. Phys. **1999**, 111, 7010-7022.
- (37) Sheppard, D.; Terrell, R.; Henkelman, G. J. Chem. Phys. 2008, 128, 134106.
- (38) Lo, J. M. H.; Ziegler, T. J. Phys. Chem. C 2007, 111, 11012-11025.
- (39) Govender, A.; Ferre, D. C.; Niemantsverdriet, J. W. ChemPhysChem 2012, 13, 1591-1596.
- (40) Storsæter, S.; Chen, D.; Holmen, A. Surf. Sci. 2006, 600, 2051–2063.
- (41) Cheng, J.; Gong, X. Q.; Hu, P.; Lok, C. M.; Ellis, P.; French, S. J. Catal. 2008, 254, 285–295.
- (42) Lo, J. M. H.; Ziegler, T. J. Phys. Chem. C 2007, 111, 13149-13162.

- (43) Govender, A.; Curulla-Ferre, D.; Perez-Jigato, M.; Niemantsverdriet, J. W. *Molecules* **2013**, *18*, 3806–3824.
- (44) Govender, N. S.; Botes, F. G.; de Croon, M. H. J. M.; Schouten, J. C. J. Catal. 2008, 260, 254–261.
- (45) Govender, N. S.; Botes, F. G.; de Croon, M. H. J. M.; Schouten, J. C. J. Catal. **2014**, 312, 98–107.
- (46) Cao, D. B.; Li, Y. W.; Wang, J. G.; Jiao, H. J. J. Phys. Chem. C 2008, 112, 14883-14890.
- (47) Torres Galvis, H. M.; Bitter, J. H.; Davidian, T.; Ruitenbeek, M.; Dugulan, A. I.; de Jong, K. P. J. Am. Chem. Soc. **2012**, 134, 16207– 16215.